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T H E R M O P H Y S I C A L  P R O P E R T I E S  
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Theore t ica l  formulas are obtained for determining the heat  transfer surface of a regenerator in the case of 

the heat  capaci ty  of one of the heat  transfer fluids, and also the heat  transfer coeff ic ient  varying substan- 
t ia l ly  through the equipment.  The effectiveness of the results is i l lustrated by concrete examples.  

In many cases of heat  transfer between fluids taking place in regenerators, the physical  properties of the heat  
transfer fluids vary so much that appreciable  errors result from inserting into the theore t ica l  formulas values averaged 
over the temperature range. In the most general case, not only the heat  transfer coefficient ,  but also the heat  capaci ty  
of the fluid are functions of  temperature.  The Altenkirch [1] method is then recommended,  according to which 

t"f 
F/G~ = i cpdl"/k (t" - -  l ').  (1) 

% 
t ,  

1 

Calculat ions based on (1) may be performed by either numer ica l  or graphical  integration, a laborious operation 
involving evaluat ion of the hea t  transfer coeff ic ient  for various temperatures,  as well  as determinat ion from tables of  
appropriate values of the specific heat. I t  should be noted that in a number of cases (close to the cr i t ica l  state) these 
values should be determined using i - T  diagrams. 

In this situation, it is natural  that a number of investigators should have a t tempted  to develop ana ly t ica l  methods 
that would permit  al lowance to be made for changes of the physical  properties of the hea t  transfer fluids during hea t  
transfer. One of the earl iest  methods is that  proposed by Shak [2], based on an assumed power law of the type 

k = a + bf~ ,  (2) 

it  being recommended that  the exponenet  is determined exper imental ly .  This considerably compl ica tes  the appl icat ion 
of relat ion (2) to equipment  design. In the special  case n = I the caIculat ion reduces to introducing an ar i thmet ic  mean 

value of k for the ends of the apparatus. 

The method proposed in [3] is based on the assumption of a t inear dependence of the heat  transfer coefficient  on 

the temperature of one of the hea t  transfer fluids 

k = a + b/". (3) 

This assumption, along with the assumption that the specific heat  is constant, leads to the relat ion 

k i (A t)f j-1 
Q~F - - - - - [ k i ( A t ) f - - k f ( A t ) i l  In k f ( A t ) i  ' (4) 

which agrees much bet ter  with the exact  formula (1) than does the usual Grashof formula. 

In cases when the hea t  transfer coeff icient  is p rac t ica l ly  constant, but there is a substantial variat ion of specific 
heat ,  apart from (1), graphical  methods are recommended,  based on the use of  i - T  diagrams [4, 5] for those sub- 
stances for which such diagrams exist. Am analy t ica l  examinat ion of the variat ion of specific heat  was made in [6], 

but, because of  an incorrect assumption,* the design formulas obtained require revision. However, as noted above, 
in pract ice we may encounter a simultaneous appreciable  variation of  specific heat  and heat  transfer coeff icient .  The 
following discussion is devoted to an ana ly t ica l  examinat ion of this case. We shall restrict  our consideration to steady 
pa ra l l e l  flow of  two heat  transfer fluids, heat  transfer between which is described by the system of  equations [6] 

W2 dt" 
t '---- 1" § 

- ks dx  

t"=t '  ~ iW1 dr' 

ks dx  ' 

*This error was kindly brought to the author's attention by K. D. Voskresenskii. 

(5) 
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where the minus sign refers to the counterflow case�9 

In these equations k is a variable and may be assumed, as will be shown below, to be a function of the tempera- 
ture of one of the heat transfer fluids, e . g . ,  t". The water equivalent Wz of one of the fluids is also a function of t". 

In general, variation of the specific heat of not one, but both fluids is possible. In practice, however, it is met 
rather seldom and will not be examined here, although to obtain a solution for this situation is not difficult in principle. 

Going to a dimensionless representation, using the notation 

k/ko = ~ ( t " ) ,  cdC~o ---. WdW~ = ~ (t") (6) 

and replacing system (5) by one second-order equation, we obtain 

[ d(ln,~/~) dt" ] dr" 
d~t" + ~ ~" R12 ~ - ~  dr" - -  - - - - 0 .  (q) - - ' - - - ' 6 " -  
dv'~ '-- 4 dv ~ dv x 

In (6), 
late to the section where heat transfer fluid II enters the equipment, then ~0(t]) = 1; ~l,(t~) = 1�9 

The boundary conditions for (7) will be: 
for parallel flow 

for counterflow 

ko and cz0 are fixed values of  these factors at one end of the regenerator. If  we assume that k0 and c20 re- 

l" = / ~ ;  dr" = R , 2 ( t i _ t ; ) ;  
Vx=O dv x v~=o 

d t "  
. . . .  p ,  Eq. 
dv~ 

dt" l = - ( t ' e -  t ]  ), 
�9 dr: ,  k x = , ,  

assuming that fluid II flows in the negative x direction. Following the substitution 

(8) 

(9) 

(7) becomes 

dp :' d(ln~?/V) p = _  ~ ( 1 +  R ~  ) ,  (10) 

dt" dr' '~ 

and, in accordance with (8) and (9), its solution 

must satisfy the boundary condition 

for parallel flow and 

for counterflow. 

fluids 

dvxdF= __~_~ [ _  S(t~ + ~  _ R12) d/" + C ]  . (11) 

plt,,=t: = R ~  (t: - -  t 7) (12) 
1 1 L 

pl,"=c = - (tf  ti'> (13  
: [ 

From (11), using (12) and (13), we may determine, for the two cases of direction of flow of the heat transfer 

U _.2.' ~ t'i 

t i t i 

(" 
1 

(,~/~, ) dr" 

+dr + n,,(t"i-t [) 

U = I 
ll (,~.1~ ) dt" 

�9 t * 
t 

f 
t 

i 

for parallel flow, 

for counter flow, 
(14) 

if the form of functions ~(t") and ~0(t") is known�9 

90 



The ratio of the heat transfer coefficients will be 

ko ~ -  %0 4- %0 %0 
%0 a2 ), a2~ -r- ' 6 1  ~'10 

The heat transfer coefficient for turbulent flow in tubes may be written in the form 

~. = A ~o.8 (G/~)0,4 

and therefore 

(15) 

~-.-~0 ~ (-~_)0"6 (__~)0"4 (CPO 10"4 
\-@p / " 

06) 

If the heat transfer fluid is a gas, the ratios of thermal conductivities and viscosities may be replaced by their ap- 
propriate temperature dependences [7, 8]. With respect to the dependence of specific heat on temperature, the form 
usually given is a polynomial. For the problem discussed here, for convenience of later calculation, we put the specific 
heat dependence in the same form as that assumed for viscosity and thermal conductivity, i .e . ,  

CplC;o = (T/To)& (17) 

This relation was checked against data presented in [101 and it was found that over quite a wide range of tempera- 
ture it gives errors not greater than a few percent (table). In view of the fact that in (16) the ratio of specific heats has 

the exponent 0.4, this error is quite acceptable. 
Values of the Exponent p is (17) for Some 
Gases and Vapors at a Pressure of 105N/m 2 

i Temperature Error 
Gas P range % 

Methane /0-59 0--000 ~ C 6 

Sulfur 0.18 0--800 ~ C 4 
anhydride 

Ammonia /0.31/300--600~ 3 

P~opane ] 0.921250-600 ~ 4 

Air 10.191500-2000~ 7 

Thus, instead of (16), we obtain 

T )o.4m--o.4p-o,6n 
" - ( w  

= (I @.T--To )~176176 
To 

where m and n are the exponents in the temperature relations 
for the viscosity and thermal conductivity of the gases. 

If for design purposes, the regenerator is divided into 
sections, in each of which the ratio (T -- T 0) / T 0 is sufficient- 
ly small, then the last expression may be linearized, i . e . ,  

0.4m --  0.4p - -  0.6n 

T O 
(T 2_ To) = I 4- bg(T - -  To). 

It will be shown below that the number of such sections is not more than two, even in cases of strong variation 
of the heat transfer coefficients and specific heats along the length of the equipment. 

If the heat transfer fluid is a liquid, the variation of the right side of (16) will mainty be determined by the 
temperature dependence of the viscosity, since the product k~ ~ changes little with temperature. For example, for 
water in the range 200-350~ the product )~~176 changes by 7%, for ethyl alcohol in the range 78.4-231.5~ - by 
1%, for diphenyl m i x t u r e - b y  1% (100-300~ and for tetracresyloxysilane -- by 15% with temperature change from 100 

to 300~ 

According to the Andrade theory [9], the viscosity of a liquid is related to its temperature and density by 

= A ,o*/, exp (B p/T). 

Taking account of the small dependence of density p on T, and replacing it by its mean value Pro, we obtain, in place 

of (16) 

s0~ - -exp[  0"4BpmToT (T--To)]. 
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Restricting our attention, as with gaseous heat transfer fluids, to a section of the equipment in which the exponent is 
sufficiently small, we obtain the following approximate relation: 

% ~ 1 +  0 " 4 B p m  ( T - - T o ) =  I + b L ( T - - T o  ). (18) 
ToT 

The approximate nature of this result is due, apart from the basic assumptions, to the fact that b l was written 
in (18) as a constant, although it depends on temperature; it is therefore desirable to give it the value b l .  m, correspond- 
ing to (T + T0)/2. 

Thus, the dependence of cx0/cz may be represented in the first approximation as a linear function of the difference 
between the temperature of the heat transfer fluid at the inlet to the equipment and the variable temperature. 

Using the equilibrium equation t '  - t"0 = ~t(t"0 - f'), which will be sufficiently accurate on a limited section of 
the heat transfer surface even in the case of variable specific heat, we obtain: 

k 1 , b = be - -  (~o/alo) b,R21 (19) 

ko 1 - -  b (to - -  f )  1 + Ba2oP, + :t~o/alo 

Comparing (19) and (3), we see that for small values of b ( t ' 6 -  t"), both expressions will give practically iden- 
tical results. Relation (19), however, more correctly reflects the physical picture of heat transfer when the thermo- 
physical properties of both media vary. 

The second equation of (19) allows us to obtain the condition for a constant heat transfer coefficient. This cor- 
responds to b = 0, i. e . ,  b~/b t = o~01~t/oq0. In examining the temperature dependence of the ratio of water equivalents 

or specific heats cz/cg_0, we assumed a linear relation of the form 

cdC2o = 1 --  a (t o - -  f ) ,  (20) 

which is a first approximation for the quadratic polynomial in temperature that describes the variation of the specific 
heats of liquids and gases. 

Expressions (19) and (28) are a form of the functions ~ and r defined by (6) and entering into (14). 

Substituting (19) and (20) into (14) and integrating, we obtain a formula for calculating the heat transfer surface 
that takes into account the simultaneous variation of the specific heat and heat transfer coefficient with temperature: 

kiF k i  1 - - k i / k  f In 1 3 - -  
v~= -=--- :_~2 1 - - - -  2~- 1 - - ( 1  --2R1.~) 1 c2f/c2;i W I k f  - -  , 

k i  

1 { 1 - - k i / k  f 
+- - - x  (1 _,:k RI~) ( 1 ) :  2Rle) 1 - -  czf/c 2 i 

1 _+ R~x ( 1 - -  z ) - -  2 8 

1 • R~ (1 + ,0 - -  21~ 

where for parallel flow the upper sign should be taken and 

ci - ti 
13 - q _  r i  

and for counterflow - the lower sign and 

t ' i -  t} 
--  t ' i -  c} ' 

- - ,  Y- - -  l//(R12 + 1 ) ' - - 2 R 1 2 ~ ( I  --c2f/c2i) 

T (21) 

( 2 2 )  

z -= ]/r ( R I 2 - -  I) 2 + 2 R 1 2  ~ (1 - -  c2f/c~i). (22a) 

In substituting numerical values in (21), it should be noted that the quantities k i and czi relate to the section 
where the heat transfer fluid with variable specific heat enters the equipment. 

Formula (21) is not valid for all cases of heat transfer, as can be seen from an examination of the integrals.in (14), 
after substituting values of q and ~ from (19) and (20). If cg.f/czi ~ 1 in parallel flow or czf/czi -< I in counterflow, " 
Eq. (21) is applicable. These conditions are very rigorous. In addition, Eq. (21) is also applicable when the inequality 

C2f.!C, i_ -%/ 1 - - ( 1  -t.,__ Ra2)~I2Rj~ ~, (2z) 
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is fulfilled, which occurs when RL~ --~ m (R21 = 0), i .e.  , when the temperature of the heat transfer fluid I does not vary 
along the heat transfer surface. 

However, if 

c2f/c2 i > 1 + (1 + R~2)~/2 R~o [3, (23') 

then Eq. (21) is unsuitable, and in this event from (14) we obtain 

where 

ki__~ = + 2 ( 1  k~ ) 
W1 kf 

+ 1 - - ( 1  + 2]~12 ) l - -c2f /c2i  

- - 1  -~ -~- c2i 

2 { 1 - - k i / k f  z 
+ - - ~  (1 - R~,)(I 4- 2R~)  1 - - c , f / c ~ i  

~.~ = V �9 2R,~ 13 ( c~ f / co . i -  ~ ) - -  (1 +_ R,~) 2 . 

(24) 

Let us examine some special cases. 

The temperature of the heat transfer fluid with constant specific hea t  does not vary along the heat transfer surface 
(R2I = 0). In this case instead of (21) and (24) we obtain 

1 
u ~ k iF/W2i= (1 - -k i /k f )  -5 (l --c~f/c2i ) -5 - f - ( 1  ki/kf)(1 - -  (25) 

- -  cef./c2i) (1 --  2~) -5 [1 - -  t3 (1 --  k i / kK) i  [I - -  ,~ (1 - -  

- -  c~f/c2i)l in [(A t)i/(A tf)]. 

if  k = const, then 

tf  Cp = const, then 

u = I - -  c2 f/c~ i -5  [ 1 - -  ~ ( 1 - -  c ,  f/c~ i) l 1 n l (a  t) i / (a  t) f]. (25 ') 

u = t - -  ki /k  f -5 [1 - -  ~(1 - -  ki/kf)] In [ ( A t ) i / ( A t ) f ] .  (2~ ") 

The heat transfer coefficient varies little along the heat transfer surface (k ~ const). In this case instead of (21) we 
obtain 

v = - - T i n  I ~--~l-Y- 2 

and instead of (24) 

R12 In 1 - -  2~  4- ]~1~ ( 1 - -  X) 

1 - -  2~ _+ R1, ( 1 -5 ,q 

v =  ~ l n ( - ~ - [ ~ - - l - T - R 2 ~ ( l @ c o ~ f / c d ) ] } - -  

(s6) 

2Rle a rc tg  zl (27) 
x 1 1 :~ R 1 ~ ( 2 , ~ -  1) ' 

where c2i corresponds to the value of  the specific heat at the inlet to the apparatus. 

The specific heat varies little along the heat transfer surface (cp ~ const). When c2f = c2i , (21) and (24) give an in- 
L . 

determinate form of the type *" - .o, on expanding which we find 
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1 ( k i  
v = + ~1 

- 1 + R:2 l k f  

X (1  - -  k i  1 

~ R12 X 
1 ~ 1 + R12 

1 + R ~ ,  )} 
' 

where k i corresponds to admission of a fluid with in i t ia l  temperature t'i, which should be borne in mind when calculat ing 
the parameter  13. 

When R n = 1 for counterflow, by expanding the indeterminate form in (28), we obtain 

V =  2 - - 7 -  1-}- Z (29) 

Calculations show that in using (21), (24) etc. there is, in most cases, no need to divide the heat  transfer surface 
into sections, and with sufficient accuracy we may  confine our attention to data on the values of the heat  transfer co- 
efficients and specific heats at  the ends of the equipment.  In important  calculat ions it may  be justifiable to divide the 
surface into two parts, having Caiculated the heat  transfer coeff ic ient  for an in termediate  section of  the equipment; i f  
the result then differs only slightly from that obtained by calcula t ing the heat  exchanger as a whole, further subdivision 
of  the heat  transfer surface will  not be necessary. 

Let us i l lustrate the effectiveness of the proposed method by two examples.  

I . .  The h igh- tempera ture  hea t  transfer fluid tetracresyloxysilane is used for evaporat ing a liquid at t '  _...1.00~ 

The temperature of the fluid at the outlet  is t~ = 10a~ and the temperature at the in le t  t i' --- 300~ is such as 
to avoid decomposit ion [11], The enthalpies,  heat  flux, and specific heats corresponding to these temperatures are, re-  
spectively,  i: - 9 4 . .  0 s t ' -  " "  1 joule/kg, i " = 2  21.105 joule /kg,  Q =  C~(9 1 1 - 2 . 2 1 ) . 1 0 5  = 6 , 9 0 . 1 0 5  C~watt,  and cei = 

, t 
= 4, 6g �9 103 j o u l e / k g  deg, c~f = 2, 8 2 . 1 0  ~ j o u l e / k g . d e g  Since the thermal  resistance of the boi l ing liquid and tile 
wall  may be neglected,  the hea t  transfer coeff ic ient  wi l l  be given by (15). 

Let us assume that the quantity A, which depends on the mass flow rate of the fluid and the tube diameter ,  has 
been determined and that k i = 1000 W / m  2 �9 deg; then kf  = 407 W/m e .deg ,  which follows from (15) if  we assume the 
thermophysical  properties are evaluated at 105 ~ C 

Thus, in the example  given we have a change in the specific heat  and hea t  transfer coefficient  by a factor of two 
or m o r e  Since the temperature of the boi l ing liquid is constant (Rel = 0), formula (25) should be used, from which we 
obtain, after substituting numer ica l  values, kiF/W2i = 4. 21 whence F = 19.5 G z m z, 

The exact  solution obtained by graphical  integrat ion of (1) gives kiF/W2i = 4. 47, i . e . ,  a value 6o7o higher, which 
is not significant,  since this difference fails within the l imits  of accuracy of the determinat ion of the heat  transfer co- 
efficient.  

I f  (4) is used, we obtain F = 25.2 C~, i . e . ,  a value 22% greater than that  given by the exact  solution. This differ- 
ence would be even larger if the specific heat  remained unchanged. 

II. This example  is borrowed from [4]. In a counterflow apparatus there is hea t  exchange between air  at c~ = 
= 2 8 . m / i e c  an d p = 80.105 N/m z and nitrogen at p = 1 . 2 ,  l0  s N/m e. 

The air temperatures are t!' = 303~ tf  = 15a~ and those for nitrogen t{ -- 80.3~ t'f = 298~ We find the 
specific heat  of air at the ends of the apparatus by numerica l  differentiat ion with respect to the i - T  diagram: czi = 
= 1.12 �9 l0  s I /kg  �9 deg, c~f = 3. 42 �9 103 J/kg �9 deg. 

We find Wzi = 3190 W/deg. Corresponding to the given thermal  flux Q = 6300 W we find W 1 = Q / A t '  = 63001218 = 

= 28.9 W/deg and R21 = 3190/28.9 = 110.5. From (22) we determine ~ = 0.0338. We verify that  (23) is satisfied. From 
(26), neglect ing the second term because in this ease, i t  is small ,  we obtain v = 8.77, whence kF = 28.9 x 8.77 = 
= 254 W/deg. The accurate,  but laborious method described in [4] gives the result kF = 280 W/deg, i . e . ,  the discrep- 
ancy is 10~ although the change in speci f ic .heat  is very considerable (c2f/c2i = 3. 06). 

These examples  indicate  that in the range of variat ion of k f /k  i and c2f/% i encountered in pract ice,  use of the 
recommended formulas should give quite acceptable  results without recourse to zonal  hea t  transfer calculations; this 
becomes expedient  when k f /k  i and cef/c2i vary by more than a factor of three, but even then i t  is sufficient to divide 
the equipment  into only two zones. 

94 



NOTATION 

F--  heat  exchange surface; W -  water equivalent  of heat  transfer fluid; A t -  temperature difference of  heat  trans- 
fer fluids; k - heat  transfer coefficient., s - per imeter  of surface; Ri2 = 1/P,,II = W~/W2; v x = kiFx/Wl; v -- value of v x 
corresponding to total  heat  transfer surface. Subscripts: 1 and 2, and ' and " refer to the first and second heat  transfer 
fluids, i and f to the sections where the fluids enter and leave the equipment,  0 to one of the ends of the equipment,  
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